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X-ray transition energies and intensities of sulphate ion are computed from limited CI wavefnnc- 
tions including singly excited configurations. The results are interpreted in terms of one-electron 
promotions by using the improved virtual orbitals introduced first by Hunt and Goddard III [11]. 

The effective potential for virtual orbitals shows a barrier at large distance from sulphur nucleus. 
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1. Introduction and Computational Procedure 

It has been observed that the X-ray spectra of molecules of the type AXn, 
where X are electronegative ligands surrounding a central atom A present often 
strong absorption bands both below and above the ionization limit (IP) of inner 
K or L electrons. These features have been interpreted as transitions from an inner, 
atomic like orbital to an excited molecular orbital [1, 2]. According to the picture 
proposed by Dehmer, the latter orbitals can essentially be of two types: diffuse 
orbitals which originate Rydberg type lines and compact orbitals concentrated 
within the molecular region, which are responsible for the strong lines. According 
to Nefedov [1] and Dehmer [21 the two kinds of orbitals are originated by an 
"effective potential barrier" due to the electronegative ligands X surrounding 
atom A. The effective potential should separate the excited orbitals in outer and 
inner well orbitals respectively, in close analogy with the situation occurring for 
f orbitals in rare earth ions [3]. 

Theoretical evidences for potential energy barriers in molecules were already 
found for BF 3 by Cadioli et al. [4] from ab initio SCF calculations. In this paper 
we have considered the sulphate ion whose X-ray spectrum, recorded by Nefedov 
and Fomichev [5], shows clearly the feature mentioned above. Since the experi- 
mental observations were made on the solid, a complete treatment taking proper 
account of the crystalline field, would involve quite laborious computations. As a 
preliminary step in this direction we carried out ab initio computations on the 
isolated ion SO 2- in order to obtain informations about its X transition energies 



78 G . L .  Bendazzo l i  a n d  P. P a l m i e r i  

and intensities and to find evidences of the potential energy barriers assumed by 
Nefedov and Dehmer. The calculations were performed according to the following 
scheme. First of all a standard LCAO-SCF treatment has been performed, 
assuming a fixed tetrahedral geometry for SO 2-, with an S-O bond distance 
of 2.835 a. u. The basis consists of 36 contracted gaussians chosen to approximate 
a minimal basis of Slater type orbitals (STO) on each atom, implemented by 4s and 
3d orbitals on sulphur. The orbital exponents ~ of STO's were given the values 
optimized by Clementi and Raimondi [6], except for 4s and 3d orbitals, where we 
have chosen ~ = 0.75. In the case of 4s orbitals this value is very close to the free 
atom optimum value [-7], and for 3d it is intermediate between the optimum 
values for atomic states arising from sp3d 2 and sZp3d configurations [8]. Orbital 
exponents and contraction coefficients of gaussians were obtained by the method 
of McWeeny and Huzinaga [9]. All the oxygen STO's are expanded in three 
gaussians, while for sulphur the numbers of gaussians are: four for ls, three for 
2s, 2p, 3s, 3p, two for 4s and one for 3d orbitals respectively. The ground state 
configuration 2 2 6 2 6 2 6 2 6 4- 6 6 la12alltz3a12t24a13t25a14tzle15t21ta was found to have an 
energy of -691.767623 a. u. The calculation produced eleven virtual orbitals 
which were used to build the wavefunctions for excited states according to the 
following scheme. The inner atomic orbitals ls, 2s, and 2p of sulphur were identi- 
fied among the SCF MO's as lal,  3aa, and 2t 2 respectively. The excited states 
are then divided in three groups, according to the vacancy in the inner shell, 
i.e. ls -1, 2s -~, and 2p -1, corresponding to the spectroscopic designations K, 
L~, and Lu,m respectively. For each group all the singly excited singlet con- 
figurations where the proper inner orbital(s) is (are) replaced by each of the 
virtual canonical MO's are built. The linear mixing coefficients of configurations 
are obtained by solving the resulting secular equations, which also provide the 
values of excited states energies. Transition energies are obtained by difference 
with the SCF ground state energy, whose wavefunction, thanks to Brillouin's 
theorem [10], does not mix with excited states wavefunctions in this scheme. 
The procedure is therefore a limited CI, where all singly excited configurations, 
compatible with the orbital basis, with a fixed vacancy in an inner shell, are 
included. These wavefunctions could formally be described, in the language of 
group functions introduced by McWeeny [10], as a product of two groups. 
The first, representing a frozen core, collects all ground state orbitals except that, 
say qh, bearing the vacancy, while the other group is built out of ~p~ and of all the 
SCF virtual orbitals. Thus orbital relaxation during the transition is accounted 
for only partially, i.e. only for virtual orbitals which are expected to be most 
sensitive to changes in the electron distribution. 

The transition energies are listed in Table 1, together with ionization poten- 
tials of inner electrons of interest. For each transition is given the value of the 
oscillator strength f ,  computed according to the formula f = (2/3)AE #2, where 
A E and # are the energy and electric dipole moment of the transition respectively, 
both expressed in a.u. A qualitative description of the transition in terms of 
orbital promotions is given in the last column. The CI wavefunctions of K and L1 
states are linear combinations of singly excited configurations with a common 
vacancy in the non degenerate orbital lal or 3a~. Therefore they can be rewritten 
as spin-projected single determinants involving one well defined excited orbital. 
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Table 1. Transition energies A E (eV) and oscillator strengths f for SO ] 
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Inner Excited AE f .  103 Qualitative 
shell state description 
vacancy designation of the transition 

ls-1 

2 S -  1 

2p-1 

1A 1 2503.8 0.0 
1A 1 2509.3 0.0 
1T z 2510.8 1.3 
1A 1 2512.9 0.0 
IT 2 2514.6 0.1 
1E 2515.0 0.0 
2A 1 2500.3 (IP) - -  

1A 1 240.8 0.0 
1A 1 246.6 0,0 
1Tz 248.7 3.2 
1A 1 250.9 0.0 
1T z 251.6 0.2 
1E 252.0 0.0 
2A 1 237.3 (IP) - -  

1 T2 178.5 0.004 
1T z 184.1 2.4 
1T 2 186.1 0.4 
1E 186.1 0.0 
1T 1 186.2 0.0 
1T 2 188.0 0.7 
tA 1 188.4 0.0 
1T z 189.3 1.8 
1T 1 I89.3 0.0 
1E 189.3 0.0 
1 T2 189.6 1.0 
1T 1 t89.7 0.0 
1,41 189.9 0.0 

�9 2 T  2 175.0 (IP) - -  

ls ~ant ib .  S3p, 02s, 02p 

l s ~  antib. S3p, 02s, 02p 

2 s ~  antib. S3p, 02s, 02p 

2 s ~  antib. S3p, 02s, 02p 

In this way the transition is described as a one electron promotion from the inner 
orbital lal or 3ai to a modified virtual orbital. The latter, because of the A1 
symmetry of the vacancy, is still a symmetry orbital. 

In case of Lu,ii t  states, this reduction of the CI wavefunctions to a single 
configuration is no longer possible, since the vacancy is localized in the degenerate 
orbital 2t2. However, an approximate reduction is still feasible, according to the 
following considerations. The modified virtual orbitals used to describe the 
K and L x states coincide with those defined by Hunt and Goddard III [11], 
Huzinaga and Arnau [12], and Davidson [13] who proposed to replace the 
Fock operator F by the following Eq. (1): 

F'  = F - (1 - e )  [ J i -  2 K , ]  (1 - e )  (1)  

where Q is the Fock-Dirac density operator of the SCF ground state and Ji,  
K i are Coulomb and exchange operators associated with the MO ~Pi bearing the 
vacancy. In the occupied subspace the eigenvectors of F' and F coincide, but they 
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do not in the virtual subspace. Equation (1) shows that the virtual eigenvectors 
of F' are subjected to a field of N-1 electrons distributed in all the occupied 
orbitals of the ground state but with a vacancy in ~Pi. Thus the substitution of F 
with F' corrects for a major shortcoming of the usual virtual orbitals, which 
feel a field of N electrons. However, if one uses directly Eq. (l) when the orbital ~Pi 
is degenerate, the operator F' is no longer totally symmetric and its eigenvectors 
are not symmetry adapted. For this reason we replaced formula (1) in case of Lmm states by: 

F"=F-1/3(1-~)[ (J~-2Ki)l(1-O) (2) 

where i runs over three orthonormal components of the 2t2 manifold. The oper- 
ator F" is now totally symmetric, therefore its eigenvectors can be classified 
according to the symmetry group of the molecule. The promotion of one electron 
from a given component, e.g. ~Pl of 2t  2 to a ~b involves the energy change given 
by Eq. (3): 

E! = e4 - el - 1/3 [2J1~-  J24, - Jse - 2K14, + Kz4, + K34,] = e4, - e l  q- 614, (3) 

where e, and el are different eigenvalues of F". Equation (3) yields in general 
slightly different transition energies when a different member of the 2t  2 manifold 
is used, the difference being given by 6~,. The latter quantities vanish when q5 is 
of symmetry A~. The eleven transition energies were computed according to 
Eq. (3) and are collected in Table 2, together with the values of 6. In the same 

Table 2. a) Symmetry designations, orbital energies (a. u.), transition energies and 6 values from Eq. (3) 
(eV), mean radii (a. u.) of virtual orbitals from Eq. (2); 

b) mean radii of basis functions referred to their centres (a. u.) 

Symmetry Orbital Transition 6 Mean radius 
energy energy 

a) 

6a~ 0.127953 178.5 0.00 10.49 
7a 1 0.335792 184.1 0.00 5.17 
6t 2 0.421660 186,5 0.35 3,29 
8a 1 0.481331 188.1 0.00 3.71 
7t 2 0.526005 189.3 0.02 4.54 
2e 0.538079 189.6 0.01 4.75 

Orbital Mean radius Orbital Mean radius 

b) 
1 s sulphur 0.11 3p sulphur 2.04 
2s sulphur 0.52 3d sulphur 4.84 
3s sulphur 1.75 ls oxygen 0.22 
4s sulphur 8.85 2s oxygen 1.22 
2p sulphur 0.45 2p oxygen 1.22 



Effective Potential Energy Barriers and X-Ray Transitions of Sulphate Ion 81 

Table are also reported the mean orbital radii R~ for virtual orbitals and for 
basis functions, computed as R 2 = (~&lr2l~pi). A comparison with the values 
reported in Table 1 for allowed transitions Lu,  m allows us to associate an excited 
orbital to each allowed transition, which will be now qualitatively described as a 
one electron promotion from 2t2 to one of the virtual orbitals. The latter can be 
divided into the symmetry species A t, T 2, and E. The first A t orbital is essentially 
a very diffuse 4s sulphur orbital; its mean radius is larger than that of the parent 
atomic 4s function. This would correspond to an outer well state of Dehmer, and, 
accordingly, the fva lue  of the associated CI transition is very small. The second 
A t orbital is associated with the most intense of the computed transitions, and it 
can be described as an antibonding MO built up mainly from sulphur 3s and 
oxygen 2s orbitals, with contributions from 4s and oxygen 2p orbitals. Its mean 
radius is considerably smaller than the previous one, but still larger than the 
S-O bond length (2.835). The last A t orbital is antibonding and involves 3s and 
oxygen 2p orbitals. Its low value of R shows that it is localized mainly within 
the molecular region and therefore it can be described as an inner well orbital. 
The orbitals of T 2 symmetry are built mainly out of 3p, 3d and oxygen 2s, 2p orbit- 
als; 6t2 is a compact inner well orbital with dominant p character 7t 2 is more diffuse 
with a large participation of sulphur 3d orbitals. 2e is a rather diffuse orbital 
built essentially out of sulphur 3d orbitals. 

2. Comparison with Experiment 

We like to stress that the present computations refer to an isolated sulphate 
ion and that the crystal field is likely to play a rather important role in transitions 
involving excited orbitals, especially those having high values of R. Therefore we 
expect to derive only qualitative indications concerning the experimental tran- 
sitions. 

We will be mainly concerned with L u , m  transitions which have been more 
extensively treated in the literature [2, 5, 13]. According to the measurements 
by Nefedov and Fomichev [5], SO 2- shows three absorption maxima a, b, and c 
at 172.6, 181.6 and 191.5 eV in K2SO 4. The bands are rather broad and are 
likely to be a superposition of more transitions. The first band has been assigned 
by Dehmer [2] to a superposition of 2t2 ~ aT (p-like) transitions, and the others 
to 2t2 ~ t~ (d-like) and 2t2 -* e* (d-like) transitions respectively. In Fig. 1 we have 
plotted a bar diagram of the computed f values versus transition energies. As a 
preliminary observation, there is a surprisingly good agreement between the 
computed and experimental value of sulphur 2p ionization potential. In Dehmer's 
paper this latter quantity seems to have been taken from a previous work by 
Vinogradov and Zimkina [,14], who approximated it by averaging the values 
for SO2 and SF 6. If we take the ESCA values [,-15] for the binding energy of 
sulphur 2p electrons measured in gas phase, we obtain 178 eV, to be compared 
with a computed value of t75 eV. On the other hand, the binding energy of sulphur 
2p electrons in solid Na2SO4 was found to be 168.9 eV by Lindberg et al. [-16]. 
Since for a large number of sulphur compounds there is an approximately constant 
shift of ~ 6 eV between binding energies measured in gaseous and solid phase, 
we get ~ 175 eV for IP of sulphur 2p electrons referred to the "gaseous" phase. 
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Fig. 1. Bar diagram of computed oscillator strengths versus transition energies (e V) for Lu, m transitions 

As far as transition energies are concerned, the comparison with experiment 
is far less favourable. If we discard our 2t 2 ~ 6a 1 transition in view of its low value 
of f the sequence of computed transition energies roughly corresponds to that 
given by Dehmer, with the exception of 2 t2~  8al between 2t--* 6t 2 and 2t 2 ~ 2e. 
An assignment rigorously based on our computed energies would identify band c 
with the superposition 2t 2 ~ 7t 2 and 2t 2 ~ 2e and band b with 2t2~ 7al, in con- 
trast with Dehmer's interpretation. However, it should be observed that the 
crystal field could modify considerably both transition energies and intensities, 
so that the present assignment can not be considered as definitive. To a first 
approximation, the nearest neighbours positive ions in the lattice are expected 
to provide an "outer well" in the potential which will especially pertub the orbitals 
of large size. Therefore a strong mixing among virtual orbitals of A~ symmetry 
is likely to occur. Moreover this well could stabilize the "outer states" and eventu- 
ally provide an interpretation for the band below the IP. 

In the present computational scheme involving only singly excited con- 
figurations built up with virtual orbitals it is very unlikely that transition energies 
below the I P of the inner electrons are obtained. The energy of the highest occupied 
MO is already + 2.95 eV, i.e. the S O l -  ion would gain energy by the removal of 
one electron from this orbital. This fact has been observed before in SCF compu- 
tations of negative ions, and it should be kept in mind that unstable charged 
species are stabilized at least by the Madelung energy when placed in a crystal 
lattice. 

It is important to point out that computed values of f are high enough to 
correspond to experimentally detectable lines. This is the only possible remark 
about K and L I transitions, where the comparison with the scarce experimental 
data [5] is still more difficult. 

3. Computation of the Effective Potential 

The HF orbitals satisfy the one electron equation 

- 1/2 V 2 ~p~ +U~p i = ~i~P~, (4) 
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where U includes nuclear attractions, Coulomb and exchange operators. Given 
an orbital 'Pi one can compute [-17] from (4) a function V(r) as in Eq. (5): 

V(r) = 1/2 V 2 'Pi/~Pi + e~ (5) 

and use it as a representation of the true non local potential U. This procedure has 
been applied before in similar problems [-4, 17-] and it has the advantage that it 
accounts for Coulomb and exchange effects as well. Equation (5) gives different 
functions V(v) when applied to different orbitals ,pi, while the idea of a potential 
barrier of Nefedov and Dehmer corresponds rather to a common potential for a 
set of excited molecular orbitals. Therefore we will look for a local approximation 
of U which holds for more than a single orbital ,p~. Given a set of n equations of 
type (4), we impose to V(r) the condition (6): 

I = SS~ ~ [-V(r) ,p~(r)- Uwi(r)] 2 dr = minimum. (6) 
i=1 

If we regard U and the ,pi's as fixed, the condition 6I = 0  gives: 

V (r) = ~Pi( U ~pi) ~p~ (7) 
i=1 i= 

which corresponds to a minimum, since 62I = ~.S~ G ~p2 dr > 0. The multiplicative 
components of U, i.e. nuclear attractions and Coulomb operators are left un- 
changed by Eq. (7), while the exchange operator is approximated by the function: 

i=1 j i = l  

where index j runs over all the lables of occupied MO's. When also i runs over all 
the occupied MO's of a given system, Eq. (8) is nothing but the averaged exchange 
charge introduced by Slater 1-18-] to simplify the HF equations. 

In order to avoid cumbersome computations, one can replace U with the 
quantity 1 / 2 V 2 ~  + e ~  as in Eq. (7). This approximation amounts to consider 
Eq. (4) rigorously fulfilled, while in actual Roothaan-type SCF computations it 
holds only approximately. The same remark applies also to Eq. (5). The use of 
Eq. (7) has some advantages over Eq. (5). The latter defines a function which is 
singular near the nodes of ~0i, and this can be rather disturbing for an highly 
excited ~ with many nodes. The function defined by Eq. (7) on the contrary will 
show a barrier only if there is a region of space where all the orbitals have low 
density and it will diverge to ~ only in the very unlikely situation that all the 
orbitals considered have a common node. Function (7) will be in general smoother 
than (5), since the local deficiencies of ~i eventually overemphasized by (5) are 
averaged over a set of orbitals. 

In Fig. 2 we show a plot of V(r) averaged over all virtual eigenvectors of F" 
(full line a). This curve is smooth and well behaved and shows something like a 
barrier on both sides of the C 3 axis, although at a very large distance (~  7 a.u.) 
from sulphur nucleus. A similar barrier is also shown if we average over all 
eigenvectors of F"; the corresponding curve is not reported in the figure since it 
is very similar to this one. If one excludes from the average the very diffuse 6aa 
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f 
Fig. 2a and b. Plot of V(r) (eV) versus distance r from sulphur nucleus along C 3 axis (a.u.). Full lines: 
(a) Eq. (7) averaged over all virtual orbitals; (b) 6 al excluded from the average. Dashed line: Coulomb 
and nuclear contributions to the potential of the Fock operator F, Dotted line: Coulomb and nuclear 
contributions to the potential of modified Fock operator F" in the virtual subspace. The position of 

oxygen nucleus is marked by a black circle 

orbital, the plot of V(r) matches curve a almost exactly in the region between the 
two main maxima, but continues to increase outside this region (full line b in 
Fig. 2). Thus, the appearance of a potential barrier is essentially dependent from 
the existence of the very diffuse 6al orbital which plays the role of outer well 
orbital, according to Dehmer's theory. 

As far as the asymptotic behaviour of such curves for r--* oe it is concerned, it can 
be shown that V(r) = O(r 2) when a gaussian basis is used to expand the MO's (see 
the Appendix). This feature can be of some relevance, in principle, in the regions of 
large r, although we think it does not matter very much here. 

In the same Fig. 2 we have also plotted the sum of Coulomb and nuclear 
contributions to the effective potential U of Eq. (4). The dashed line is the repre- 
sentation of the multiplicative operator 

C = 2 Z J, + Z Za/ra (9) 
i A 

where index i runs over all occupied orbitals and index A over all the nuclei in 
the molecule. In other words, the dashed line represents the electrostatic potential 
generated by all nuclei and electrons in the ground state of SO]- .  A maximum is 
evidenced at small distances from sulphur nucleus, as a result of the excess nega- 
tive charge of the ion. Equation (9) does not represent satisfactorily the Coulomb 
potential for an occupied orbital ~pg, since it contains also the self-repulsion 
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term Jk [11, 18]. For the modified virtual orbitals here used is more appropriate 
to consider, instead of Eq. (9), the operator: 

3 
C " =  C -  t/3 Z Jr (10) 

j = l  

defined consistently with Eq. (2). The corresponding plot is given by the dotted 
line of Fig. 2. Therefore the barrier at large r shown by the full line a is not due to 
Coulomb effects, and, provided it is not a mathematical artifact due to the smallness 
of the basis set, it could support the concept of "effective potential barrier" pro- 
posed by Dehmer. 

Appendix 

Given a set of gaussian type functions {gi(r)} defined as in Eq. (A 1), 

gi( r )  =Cx: - xi)  l (y  - yi) m (z - zi) n e x p ( -  ~,r2) { 
(aO 

r E = (x  - x i )  2 -'}- (y - yi) 2 q- (z - -  Z i )  2 

it is easy to show that the following equations hold: 

V2 gi = O(r2)  gi , r--+ o o ,  (A2) 

gi-- O(ga) i f ~ > ~ a ,  r--+ oo. (A3) 

Suppose now that in the set {g~} there exists a single gaussian gk having an 
exponential parameter ~k smaller than any other function in the set. This is 
actually true in our case, where gk is one of the expansion functions of sulphur 
4s orbital. Then, if ~p,, is a linear combination of the g~'s, i.e. *Pro =s Cmigi, 
one gets: 

V2 ll)rn "1- '~mlPm = O(r2)  gk , Cmk # O, (A4) 

lpm = O(gk)  , Cmk ~ O,  (A5) 

V 2 *P,, + e m  ~P,, = O(r2) ~ (gk),  Cmk = 0,  (A6) 

*P,, = O(gk)  , Cmk = 0. (A7) 

Equat ions  (A4)-(A7) show that the averaged form of V(r) derived from 
Eqs. (5) and (7) is a O(r2). 
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